<u>CLASS – XII</u>

SUBJECT : CHEMISTRY

MONTH: JUNE 2024

CHAPTER: SOLUTION AND ELECTROCHEMISTRY

QUES NO	TYPE OF QUESTION (REASONING / MCQ / MATRIX / GRID / OTHER)	QUESTION	OPTION PROVIDED	CORRECT OPTION	EXPLANATION	% OF STUDENTS ATTEMPTED CORRECTLY
01	R & A	Assertion (A): When NaCl is dissolved in water there is elevation of boiling point of solution . Reason (R): Vapour pressure of the solution form increase after addition of NaCl in water.	 Both Correct R correct A False R False A Correct R And A Both False 	3	Vapour Form decreases	34.30 %
02	мсо	A 5% solution of Cane sugar (mol. mass - 342g/ mol.) is isotonic with 1% solution of a substance X, what is the molecular mass of X.	1. 342 2. 117.80 3. 68.40 4. 136.80	3	Using Formulae of Osmotic Pressure π=CRT	75.30 %
03	мсо	If molality of the dilute solution is doubled, the value of molal depression constant (Kf) will be	 Halved Doubled Tripled Unchanged 	4	Constants do not changes with Concentration	68.60 %
04	R & A	Assertion: When a solution is separated from the pure solvent by a semi-permeable membrane, the solvent molecules passed through it from pure solvent side to the solution side. Reason: Diffusion of solvent occurs from a region of low concentration solution to a region of high concentration of solution.	 Both Correct R correct A False R False A Correct R And A Both False 	1	Both are correct but reason is not for the Assertion	36.50 %

05	MCQ	The solution containing 6.8 g of non-ionic solute in 100 g of water was found to freeze at -0.93°C. If Kf for water is 1.86, the mol. mass of solute is	1. 13.6 2. 64 3. 38 4. 136	4	Applying the formulae of Depression in Freezing Point	49.00 %
06	R & A	Assertion: Am for weak electrolytes shows a sharp increase when the electrolytic solution is diluted. Reason: For weak electrolytes degree of dissociation increases with dilution of solution.	 Both Correct R correct A False R False A Correct R And A Both False 	1	Both are correct with correct explanation	72.40 %
07	мсо	The specific conductivity of N/10 KCI solution at 20°C is 0.0212 ohm-1 cm-1 and the resistance of the cell containing this solution at 20°C is 55 ohm. The cell constant is	1. 3.34 CM -1 2. 1.166 CM -1 3. 2.372 CM -1 4. 3.682 CM -1	2	Using the Formulae of Conductivity and Cell Constant	71.20 %
08	мсо	Units of the properties measured are given below. Which of the properties has been not matched correctly?	 Molar conductance = Sm2 mol-1 Cell constant = m-1 Specific conductance of = Sm2 Equivalence conductance = S m2(g eq)-1 	2	Sm-1	64.70 %
09	мсо	How much time is required to deposit 1 X 10-3 cm thick layer of silver (density of 1.05 g cm-3) on a surface of area 100 cm2 by passing a current of 5 A through AgNO3 solution?	1. 125 s 2. 115 s 3. 18.7 s 4. 27.25 s	3	Using the formulae of Faradays Law w=Zit	71.80 %
10	MCQ	Use the data given below find out the strongest reducing agent.	 Cl Mn²⁺ MnO₄⁻¹ Cr³⁺ 	4	Number of electrons involved	57.40 %